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Abstract. Some cosmological solutions of the scalar-tensor theory of gravitation are 
derived. The results differ from Friedmann and Brans-Dicke cosmologies, though not 
sufficiently to enable an immediate decision between these theories to be made. In the case 
of the solar system the new theory is a special case of theories discussed by Bergmann and 
Wagoner. 

1. Introduction 

In a previous work (Bicknell and Klotz 1976) we considered the derivation of the 
relativistic field equation of a conformally invariant scalar-tensor theory of gravitation 
with a long-range scalar field 4. If we write 

x = 4  + 12pv, (1) 

(2) 

(3) 

where p and v are constants, these may be written in the form 
k 4 2 

( p 2 - ~ x 2 ) G i j + ~ x , ~ J - ~ x , k ~ k g i j + ~ x ( g i j ~  ;k -X;ij)-(d /8q)gij = - 8 v  Tj 
and 

04 +bR4 -43 = - ( 1 6 ~ y ~ / p ) T .  

Here 

~ , i  = 4,i, q = 1 - 12v2, 

y2 is a constant related to the gravitational constant, Gij is the Einstein tensor, Ti,, the 
energy-stress-momentum tensor, R, the Ricci invariant and T = gi'Tj. Latin indices go 
from 1 to 4 and the summation convention is obeyed. We may note that the sign (upn'on' 
arbitrary) of the 44 and 43 terms is chosen so that a perturbation on a constant solution 
should give waves travelling at a speed less than that of light. In this paper, we shall 
consider some cosmological solutions of the equations (2) and (3) under several 
simplifying assumptions. First we shall assume that the metric is a Robertson-Walker 
metric of the form 

ds2= a 2 ( r ) ( ~ + r 2 ( d 0 2 + s i n 2 0  dr2 dq2)-dt2) 
(4) 

where the factor U is a function of the coordinate time only and k is *1 or 0. When 
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k = +1 this metric is thus conformally related to an Einstein universe for the particular 
coordinate system chosen. Since all points on the hypersurface t = constant of the 
Robertson-Walker world are equivalent, it follows that q5 (and x )  must likewise be a 
function of t only. We assume also that under a conformal mapping 

x transforms also according to 

(6) 

It has been shown in Bicknell and Klotz (1976) that the above equations are the field 
equations of a conformally invariant theory expressed in a particular gauge, that in 
which stress energy is conserved. As they stand they do not appear to be manifestly 
conformally invariant. However, under the transformations ( 5 )  and (6) the only 
conformal-invariance-breaking term is the first term p2Gii and we can make use of this 
fact in calculating the left-hand side of the field equations in the above metric. The 
conformal transformation 

- 4 2  I x = e  x .  

(7) eU = a 2  

maps the Robertson-Walker world onto a quasi-Einstein one, for which the calculation 
of Gij, etc is much simpler. We have in fact 

G:'= Gi'= G:'= -k, G:' = -3 k, R '  = 6k. (8) 

Finally, we assume a pressure-less universe with 

TI = pc2u'ul (9) 

(re-introducing the speed of light, c )  and with matter moving along t-lines, so that 

U' = (0, 0, 0, dt/ds) = (0, 0, 0, l / a )  (10) 

since along these paths 

ds = a dt. (1 1) 

2. The equations determining 4' and a 

In our particular gauge the energy-stress-momentum tensor is conserved: 

Ti;$ = 0. (12) 

The assumptions made above concerning the global behaviour of matter imply that the 
only non-zero component of .T;, is 

T44 = pc2a2, (13) 

pc2a = A, (14) 

so that T = p c 2  and equations (12) give (Weinberg 1972, p 472) 

a constant which we take to be positive together with positive a. A straightforward 
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calculation now shows that the field equations determining 4’ and a, are 

and 

Q’ + k+’ + + I3  = -( 167rvy2/~)A. 

Also, contraction of (2) with g” gives 

a + k ~ + - + ’ ~ = 4 7 A .  v T Y 2  
Pq 3P 

The dots above denote differentiation with respect to r. Eliminating + I 3  between 
equation (17) and (18), we get 

We must now determine the initial conditions under which the above equations are 
to be solved. Let us suppose (the ‘big bang’ hypothesis) that the universe is at present 
evolving from an highly condensed initial state. Then, to a good approximation, we may 
take 

a(0) = 0, (20) 

4(0) = 0. (21) 

and because (5 )  and (7), also 

The functions 4’ and a are continuous and at least twice differentiable and, if the initial 
scalar field (+’ /a)  is finite, 

+‘ 4’ 4‘ -(16m~y’/p)A 
lim -= lim -= lim -= 2 =-12/.Lv 
t+O a t+o a l+o a 4rry2/3p 

from equations (17) and (18). 

k(a’1.L - A(+’ + 12~va)’) + ri ’& - a(&’/u) + 1 2pvI2} - ( 1/24q)+I4 

Equation (16) can be written in the form 

- (8rry2A/3)a = 0. (22) 

a(0) = 0, (23) 

#yo) = 0, (24) 

On taking the limit as t + 0, we get 

because of (22) and since p # 0, equation (22) now implies also that 

and so (20), (21), (23) and (24) constitute a complete set of the initial conditions for 
equations (15), (16), (17) and (19). We may observe that compatibility of the latter set 
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of equations is ensured by their derivation from a variational principle demonstrated 
elsewhere (Bicknell and Klotz 1976). 

Equations (19) now give 

k = O  

k = + 1  

[%(cosh t - 1) k =-1. 

As equation (17) shows, the scalar field 4’ is an elliptic function. Once 4’ is known it 
may be substituted into the above equations to give an expression for a( t ) .  However, 
the resulting expressions for the Hubble constant, deceleration parameter, proper time 
since t=0 ,  etc are all rather unwieldy and do not yield much information. 
Consequently in the following section we present some results of numerical calcula- 
tions of the relevant cosmological parameters. 

3. Observational parameters and numerical results 

Two of the most important parameters in cosmological models are the Hubble 
parameter 

1 da 
a d r ’  

H = - -  

and the deceleration parameter 

a d2a/dr2 
(da/dr)’ ’ 

U = -  

where the proper time r since the initial singularity is given by 

r =; I ‘ a ( t )  dt. 
C O  

In terms of the coordinate time therefore 

H = c ( a / a 2 )  and 1-a  =aa/a’. 

From equations (18) and (14) we now get 

H 2  k 4 q Z  2 ~ 4 ’ ~  ( a - - 1 ) 7 = 7 - 7 p c  +y. 
c a 3~ M a  

Comparison with the corresponding expression in Einstein’s theory now gives a 
cosmological ‘constant’ 



Solutions of scalar-tensor theory 165 1 

It was found that when v = 0.1 and p = lopz6 m-l the calculated values of the above 
parameters were different from the corresponding Friedmann values. Several numeri- 
cal integrations were performed in the neighbourhood of these values, and several 
values of A were taken corresponding to different values of the deceleration parameter. 
(In the Friedmann models A is related to the deceleration parameter (Y and the Hubble 
parameter H by 

The numerical integration of the field equations was continued until a value of 
H = 55 km s-l Mpc-' was obtained, this being one of the most recent determinations of 
the Hubble constant (Gott et a1 1974). The value of y 2 / p 2  was chosen in order that the 
value of G, given by equation (35)  in the last section of this paper, should obtain its 
present value at the value of H given previously. 

In table 1 we present a sample of these calculations. The columns headed ( Y ~  and TF 
give respectively the Friedmann values of the deceleration parameter and of the proper 
time (since the 'big bang') corresponding to the above Hubble constant and the 
computed density of the scalar-tensor model. The third column in table 1, - x / p ,  refers 
to the background value of -(C$ + 1 2 p v ) / p  which determines solar system predictions. 
These will be discussed in the last section of this paper. In the last column the value of 
(1/G) dG/d.r is also given. For all models v = 0.1. 

4. Discussion of the results 

The values of the deceleration parameter and proper time do not reveal any large 
differences from the corresponding Friedmann values. Perhaps the most sensitive 
cosmological test of the present theory is provided by (1/G) dG/dT although our values 
of this quantity are at least two orders of magnitude less than the observational limit 

A point of interest is that in our theory (1/G) dG/d.r is positive whereas in the 
Brans-Dicke theory it is negative. 

Unfortunately, in order to determine p = lopz6 and v = -lo-', for example, (Y andp 
would have to be known to at least two significant figures. Thus, although the calculated 
trends in the values of cosmological parameters distinguish our theory from other 
cosmologies, Friedmann or Brans-Dicke, it is impossible to decide between their 
objective validity on the basis of the known observational data. On the other hand, the 
scalar-tensor theory presented here suggests certain tests based on observations within 
the solar system. 

5. Solar system tests 

In considering solar system tests of the scalar-tensor theory we may neglect the term C$4 
in the Lagrangian (Bicknell and Klotz 1976). The action integral then becomes 
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and is formally equivalent to a special case of the Bergmann-Wagoner theories 
(Bergmann 1968, Wagoner 1970) for which their scalar field 4 is given by 

and their arbitrary function w (of +), by 

w = -  3 Y 2  * 
2P2 1-Y2/P2*' 

(34) 

If I& = I(Io far outside the solar system, the parameters which determine the deflection 
of light, time dilatation and the precession of the planetary perihelion are 

= w(*o), 

itself, and 

p=(2w+4)-'(2w+3)- - . 
d 4  $=*o 

Incidentally, as w + CO and p+O the theory becomes equivalent to Einstein's. 
The gravitational constant at the present epoch, as determined by Ni (1972) is 

so that in the natural units in which Go = c = 1, 

whence 

The observational constraints placed on o and p (Will 1972) are 

w > 6 and -0.46 < p < 0.64. 

Hence we get 

lXO/Pl < 1-55, (37) 
as an upper limit on the background field. Note that the values of Ixo/p I in table 1 are all 
consistent with this constraint. 

6. Conclusions 

Although the wave equation for the scalar field 4 is only a seemingly slight modification 
of that of the Brans-Dicke theory the characters of the two theories differ considerably. 
In our theory the effect of the scalar field on the gravitational constant is not as marked. 
There is also a strong interplay between cosmology and solar system observations. The 
background (cosmological) value of the scalar field determines the deviation of the 
precession of perihelion and bending of light from their Einstein values. 
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